

microwave frequency, 4-port circulator has been demonstrated most effectively by Arams, *et al.*¹ This communication reports the results of an independent and concurrent development program at our laboratory which led to a similar L-band circulator using a somewhat different configuration.

A block diagram of our circulator is given in Fig. 1. It employs a gyrator which provides 180° of differential phase shift and two simple 90° hybrids of the quarter-wave, coupled stripline type. Such hybrids covering an octave bandwidth are readily obtainable.

The circulator described by Arams, *et al.*, used two 90° differential phase shift sections which required the development of a wide-band coaxial magic tee. Their arrangement permitted use of shorter yttrium-iron-garnet slabs than in the case of a gyrator and formed a convenient package in the UHF range. Comparable losses are obtainable with either arrangement, since only one-half of the energy incident on a circulator using a gyrator is attenuated in the longer slabs.

A cross section of the low-loss gyrator is shown in Fig. 2. Best results were obtained using yttrium-iron-garnet slabs (6.0" \times 0.396" \times 0.250") with low saturation magnetization ($4\pi M_s = 600$ gauss) and narrow linewidth ($\Delta H = 50$ oersteds). The garnet was biased

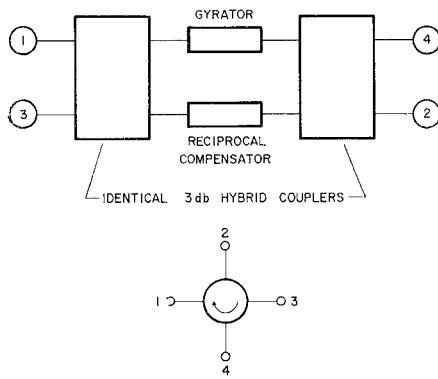


Fig. 1—Block diagram of circulator with circulator symbol.

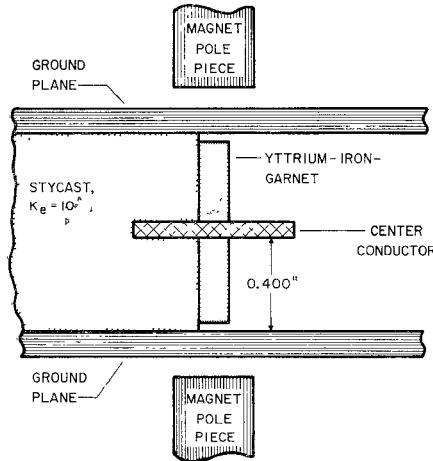


Fig. 2—Cross-sectional view of yttrium-iron-garnet gyrator.

¹ F. Arams, *et al.*, "Octave-bandwidth UHF/L-band circulator," IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-9, pp. 212-216, May, 1961.

below resonance with a constant magnetic field. Insertion losses were 1.0 db or less from 1.10 to 1.70 Gc/sec and the isolations were greater than 15 db as shown in Fig. 3(a), (b), and (c). The upper frequency limit of the experimental circulator was determined by the stripline hybrids which were designed for the frequency range 0.8 to 1.6 Gc/sec.

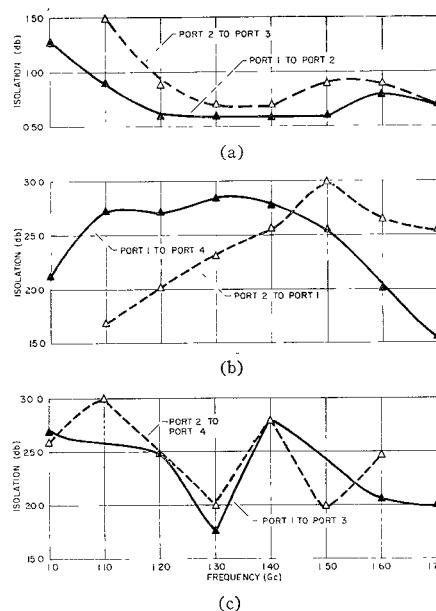


Fig. 3—Performance data for L-band circulator. (a) Insertion loss as a function of frequency. (b) Isolation between adjacent ports as a function of frequency. (c) Isolation between opposite ports as a function of frequency.

W. S. KOOP
A. K. JORDAN
Microwave and Antenna Section
Research Division
Philco Corp.
Blue Bell, Pa.

The stepped-tereflon transformer of Fig. 1 fills the entire cross section of the circular guide, thus permitting pressurization for higher peak power capabilities. A curve showing the VSWR for a prototype unit is also shown in Fig. 1. The VSWR increases to 1.20 at frequencies of 7.0 and 9.0 Gc.

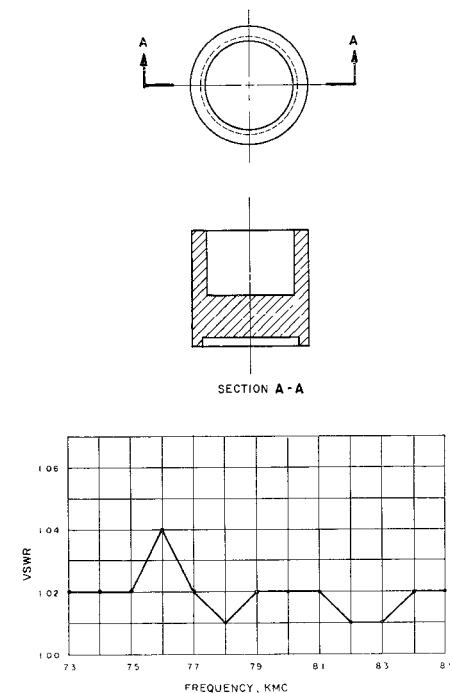


Fig. 1—Stepped-tereflon transformer.

In order to choose the diameter of the circular guide the following steps should be considered:

- 1) The TM_{01} is the first higher-order mode which may propagate after the dominant TE_{11} mode. The cutoff wavelength for the TM_{01} mode is

$$\lambda c = 2.61a, \quad (1)$$

where a is the radius of the circular guide. Therefore, to maintain mode purity, one should choose a guide diameter small enough to stop the propagation of the TM_{01} wave at the highest frequency of concern.

- 2) The characteristic impedance as defined by power and voltage considerations for WR(112) rectangular waveguide is 443 ohms at 8 Gc. For a circular guide of one inch diameter the characteristic impedance is 1508 ohms at the same frequency.

It is seen then, a one inch diameter guide has an impedance several times greater than the impedance of WR(112) rectangular waveguide. The characteristic impedance of circular guide for TE_{11} mode is given by³

$$Z_{ww} = \frac{754}{\sqrt{1 - \left(\frac{\lambda}{3.41a}\right)^2}} \quad (2)$$

* Received by the PGMTT, July 21, 1961.

¹ I. D. Olin, "Dielectric transformers for X-band waveguide," *Electronics*, pp. 146-147; December, 1955.

² R. A. Whiteman, *et al.*, "A low reflection dielectric waveguide stepped taper," *Proc. National Electronics Conf.*, vol. 14, pp. 393-412; 1958.

³ G. C. Southworth, "Principles and Applications of Waveguide Transmission," D. Van Nostrand Co., Inc., New York, N. Y., p. 125; 1950.